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Abstract. We investigate the presence of defect structures in generalized models described by a real scalar
field in (1, 1) space-time dimensions. We work with two distinct generalizations: one in the form of a product
of functions of the field and its derivative, and the other as a sum. We search for static solutions and study
the corresponding linear stability on general grounds. We illustrate the results with several examples, where
we find stable defect structures of modified profile. In particular, we show how the new defect solutions may
give rise to evolutions not present in the standard scenario in higher spatial dimensions.

1 Introduction

This work deals with defect structures in models described
by a real scalar field in (1, 1) space-time dimensions. These
systems support topological and non-topological defect
structures, which have been studied in diverse scenarios
— see, for instance, [1-3]. Usually, in models described by
real scalar fields the topological solutions are stable, kink-
like defects, and the non-topological solutions are unsta-
ble, lump-like defects. An interesting motivation for the
study of kink-like defects is that their embedding in four
spacetime dimensions gives rise to cosmological domain
walls, which should have been formed in primordial phase
transitions in the early universe. Domain walls tend to
rapidly dominate the energy density of the universe un-
less they are very light [4]; however, a number of different
domain wall models with interesting cosmological features
may be considered. For instance, there are models with
non-stable domain wall networks where some of the vacua
are energetically favoured [5—7] and, consequently, the do-
main wall networks decay during their evolution. Models
with a non-standard domain wall, light enough to satisfy
current cosmic microwave background constraints, which
may have a possible contribution to dark energy, have also
been considered [8] if frozen (frustrated) networks can be
formed [9,10]. Another motivation for studying domain
wall networks has recently emerged from the context of
brane inflation [11,12]. Therefore, it should be of interest
to study the evolution of different domain wall networks
in the context of modified dynamics. Other important as-
pects of studies using scalar fields as possible explanations
of dark energy concern quintessence [13-15], some dis-
tinct generalizations of the Chaplygin fluid [16—-23], and
k-essence [24-29].
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Further extensions come from superstring theories,
which have also suggested generalizations of the standard
dynamics. An intriguing possibility concerns the tachyon
field [30, 31], in which one modifies the dynamics in a way
very similar to the Born—Infeld extension of standard elec-
trodynamics [32], which is done to make the nonlinear
contributions smoothen the divergences that appear in the
standard case.

The case of a single real scalar field ¢ with standard dy-
namics is governed by the Lagrange density

L=X-V(9), (1)

where we are using X = (1/2)0,¢0"¢ to represent the
kinetic and gradient contributions to the dynamics, and
V(¢) is the potential. Due to results inspired by super-
string theories, the scalar field can also evolve under the
tachyonic dynamics. In this case, the Lagrange density is
modified to [30, 31]

L=-V(p)VI—2X. (2)

These two distinct possibilities will be used to guide us
in the present work, where we introduce and investigate
two distinct classes of models. In the first case, we consider
extensions of the tachyonic dynamics; that is, we consider
models of the type

L=V($)F(X), (3)

where F/(X) is in principle an arbitrary function of X. In
the second case, we consider extensions of the standard dy-
namics; that is, we consider models of the form

L=F(X)-V(9). (4)

These two specific classes of models will be investigated be-
low. Similar ideas have already been worked out in [35], but
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here we follow another route, searching for explicit defect
solutions and investigating the corresponding classical or
linear stability.

The general structure of the present work is orga-
nized as follows. In Sect. 2, we present general considera-
tions on the model, and we investigate the linear stability
of the classical solutions on general grounds. In Sect. 3,
we deal with specific models of both types (3) and (4),
searching for static solutions and investigating the cor-
responding stability. We elaborate on other motivations
in Sect. 4, where we investigate features that appear in
higher spatial dimensions in clear distinction to the stan-
dard scenario.

2 General considerations

In this section, we turn attention to some characteristics
of the general model, which is described by the Lagrange
density £(#, X). Below we deal with the presence of static
solutions and the corresponding stability.

2.1 The model

We consider the case of a single real scalar field. The
more general model that preserves Lorentz symmetry is de-
scribed by the action

S= / d22L(6, X)), (5)

where £(¢, X) represents the Lagrange density, which is to
be specified below. We suppose that the Lagrange density
does not depend explicitly on the space-time coordinates;
thus, the model engenders Poincaré symmetry. The equa-
tion of motion is given by

O (Lx0"¢) =Ly, (6)

where Lx =0L/0X and Ly = 0L/0p. We expand this
equation to get

Lx 0" 90,0+ Lxx 0" p0% 90,000+ LxTp =Ly . (7)

We turn attention to the energy-momentum tensor 7},,,.
It has the form

TH = Lx 0" $0"p— 1" L. (8)

It is conserved for field configurations that obey the equa-

tion of motion (7). The components are given explicitly by
T =p=Lxd*—L
TOl — TIO — 'CX¢¢/
T =p=Lx¢”+L,

(9a)

where we are using ¢ = d¢/dt and ¢/ = d¢/dz.
Since we are dealing with a very general model, we let
ourselves be guided by the null energy condition (NEC);
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that is, we impose T}, n#n” > 0, where n* is a null vector,
obeying g,,n*n” = 0. This condition restricts the model
forcing it to obey
Lx >0 (10)
for ¢(x,t), which solves the equation of motion (7).
We search for defect structures, and we consider the

static configuration ¢ = ¢(x). In this case the equation of
motion (7) changes to the simpler form

(2Lx,x, Xs+ Lx,) 9" =2Lx,6Xs =Ly, (1)
where we are using the subscript s to remind us that we
should consider the static configuration: for instance, X
stands for X for a static field; that is, X, = —¢'2/2 <0.

We turn attention to the equation of motion (11), which
can be integrated to give

Li—2Lx X, =0C, (12)
where C is the integration constant. It is interesting to
check that this constant C is nothing but the pressure, 7!,
which is constant for static solutions — see (9).

The total energy of the field configuration ¢(z, t) can be
obtained as the integral over all space of the energy density,
the 7% component given in (9a). If the field configuration
describes a static solution we have ¢ = ¢(x), and in this
case the total energy is given by

fop /M dwl(é, X.). (13)

— 00

It identifies the rest mass of the defect structure, and it is
important to generalize Derrick’s theorem [33, 34], to elab-
orate on the necessary condition for stability of the static
solution in the present environment. To do this, we first in-
troduce ¢*(z) = ¢(\ x). We use ¢* to define E in the form

+o0 1 d¢/\ 2
Ey=— [ ) 14
\ /mdx,c<¢,2<dx> (14)
We see that Ey|y=1 = E. Thus, we can write

400
OB\ _ / de (AL, —2MCx, X)) . (15)

o\ oo
This expression is to be minimized at the value A = 1, and
this leads to the condition

Li—2Lx, X:=0. (16)
We compare this result with (12) to conclude that only
static and pressureless configurations can be stable.

This equation is a first-order differential equation, since
it only depends on the first derivative of the scalar field.
This is the pressureless condition, and it is necessary for
stability.
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2.2 Linear stability

The results of the former section, Sect. 2.1, are very gen-
eral, and now we complement them with classical or linear
stability, which also illustrates how to evaluate quantum
effects. We introduce general fluctuations for the scalar
field in the form ¢(z,t) = ¢(x) + n(z,t), where ¢(z) repre-
sents the static solution. We use these fluctuations in the
action to get the quadratic contributions in 7 in the form

1
S@ — 2 / d2%z {/Jxau??a”??*-ﬁxx (Dup0"n)?
+[Lop — O (Lox0"9)] 772} - (17)

The equation of motion for 7 is then given by

Op (Lx 0"+ Lxx0"$0ad0°n) = [Log — O (Lox " ¢)(] U )
18

Since ¢ is static solution, we can write

L.~ [2Lx,x. X+ Lx) 1) = (Loo+ (Loxd) ) 1.

(19)
We suppose that
n(t, x) = n(x) cos(wt) (20)
and obtain
—[(Lxox. X+ Lx )0V = (Loo+ (Lox,d) +6Lx, ) 0.
(21)
To ensure hyperbolicity, we impose [35]
a2z xexe Xatlx, (22)
Lx,
The above equation, (21), has the form
—la(z)n'] =b(z)n (23)
where
a(z) =2Lx x. Xs + Lx, (24a)
b(x) = Log+ (Loxd) +w Lx, . (24b)

To make the investigation easier, we introduce new
variables. We make the changes

u

dx = Adz ,
LxA

and n= (25)

which allow one to write the Schrodinger-like equation

—u,, +U(2)u = w?u, (26)
where
_(ALx)i 1 1/, ¢
U(z)= (AL‘X)% ~ I [54,4, + 1 <£¢XI> j (27)
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is the quantum-mechanical potential we have to solve to
have the corresponding eigenvalues and eigenstates.

Linear stability requires that the eigenvalues w? are non-
negative, and this crucially depends on the potential U(2),
which should be investigated for each one of the specific
models that we explore in the next section. An interest-
ing issue is the possibility of w being zero, giving as the
corresponding eigenstate the zero mode. Although we are
considering generalized models, they engender Poincaré in-
variance, so no defect solution should grant a privilege to
localize itself on the real line [41]: if ¢(z) is a defect solution,
the infinitesimal translation ¢(x+€) = ¢(x) 4+ e(d¢/dx)
should be costless. To quantify the reasoning, we use the
quadratic action (17) to obtain the expression

%ﬁ{(£¢X¢/+2£XXX77/+5X77')/+5¢¢}77» (28)

which can be integrated to give the energy contribution.
However, we use the equation of motion (21) with w — 0 to
see that this quantity vanishes, showing that the zero mode
is indeed the derivative of the defect solution, and that it is
costless.

3 Models

The simplest model is the standard model, which is de-
scribed by

L=X-V(d). (29)
In this case, we have Lx =1, Lxx =0, Lx3 =0, Ly =
—Vs, and Ly = —V3s. We see that the former results re-
produce the well-known results of the standard situation.
For instance, we use (11), (13) and (21) to get, respectively,

"=V, (30)
E= / dz (%w + V(¢>)) (31)

and
="+ Voo = w’n, (32)

which we recognize as the equation of motion and energy
of the static field and the Schrodinger-like equation for the
fluctuation in the standard model.

We notice that for the standard situation, the pressure-
less condition (16) leads to

1
§¢12 = V(¢) )
which shows that the gradient and potential energy den-
sities contribute evenly to the total energy of the static
configuration.

We use the ¢* model to represent the standard situ-
ation. In this case the potential has the form

(33)

V(g)=5(1- ¢ (34)
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This model is solved by the kink-like defect structures

¢(z) = + tanh(z). (35)
The energy density is
plw) = sech(z), (36)

which gives the energy E =4/3. In Fig. 1 we plot with a
bold solid line the above potential, defect solution and en-
ergy density, which may be seen as the standard scenario,
useful for the extensions to be considered below. In this
case, we can use the width of this standard solution as a ref-
erence for the width of the defect solutions of the extended
models of Sect. 3.2.

The form of the Lagrange density of the standard model
suggests that we introduce two distinct classes of models,
as we do in the next subsections.

3.1 Extended models of the first type

In this case, we concentrate on models described by the
Lagrange density (3), where V and F are functions to be
specified. In these models, the dynamics is inspired by the
tachyon field. The equation of motion (11) has the form

V.
QF/X.+F)¢'= 7 @FX,~F) (1)
and the first-order equation is
V(¢) (Fs —2F,X,) =0, (38)

where Fy = F(X;), and a prime means a derivative with
respect to the argument of the function.

We first consider the case V = 1; this leads to a class
of models that support no static finite energy field config-
uration. The next case is for V(¢) generic; in this case the
first-order equation (38) is an algebraic equation, and the
solutions describe constant X . If these constant values are
finite, the field configurations are given by

¢i(z) = a;z, (39)
which correspond to X! = —a?/2, such that X, = Fi/2F)
are solved by X:, ¢ =1,2,... These topological solutions

diverge asymptotically, but the energy may be finite if
V(&) is properly chosen. In this case, the energy (13) be-
comes

+oo
dzV (a;z)

E;=-F (—af/z)/

_ Pl /°+°°°

|(11'| —o0

doV(9). (40)

We notice that all the solutions are pressureless and inde-
pendent of the specific form of V(¢), although the energy
depends crucially on V(¢). For this reason, we have to
choose V(¢) properly to make the integral (40) well de-
fined. If V(¢) is non-negative, we have to set
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F(-a?/2) <0 (41)

to make the static solution stable.
Suppose now that V(¢) > 0, with zeros at the set b;, i =

1,2, ... In this case, another kind of solutions of (38) have
the profile
b;, for >0,
¢ij (LL‘) = %(bl + bj), for =0, (42)
b, for =<0,

where ¢, j label consecutive zeros, with ¢ < j and b; < b;,
and F, — 0, and X, — —oo, such that F, X — F/2. These
configurations have an energy density localized at = 0,
the center of the kink, and a finite energy, given by

bj
E= )\/b doV (), (43)

where ) is such that for X — oo one has Fs — —\¢'.

This type of models have recently been considered for
string inspired systems of tachyon condensation [30,31,
37-39].

We take as an explicit example the model introduced
in [37], in which

F(X)=-(1-2X)*, (44)
where a is real and positive. The NEC restriction (10) im-
plies that X < 1/2, which is satisfied by all static solutions.

The first-order equation (38) gives

V(p)(1—-2X)*"1[14+2(2a—1)X]=0, (45)
and now we get the solution X, = —1/2(2a —1). The re-
striction (22) implies that a > 1/2. The static field is given
by

x
=t —. 46
oa) = £ (40)
We notice that the case a = 1 was investigated in [38].
The energy has the form
1 oo
E = (2a)*(2a—1)3 / deV(e).  (47)

In the above model, the limit a — 1/2 is very inter-
esting, since it reproduces the tachyon model considered
in [30,31,40]. Here the first-order equation requires that
the defect presents a singular profile, identified as the sin-
gular tachyon kink

0, for >0,
$(x) =140, for =0, (48)
—o0, for z<0.

In the tachyon model, V(¢) is usually non-negative, and
it attains its maximum at ¢ = 0, going to zero asymptot-
ically. Some nice functions are V(¢) = sech(¢)/, V(¢) =
sech®(¢)/2 and V(¢) = e’¢2/\/7_r, which integrate to unit,
giving a unit energy to the corresponding defect structure.
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3.1.1 Linear stability

Let us turn attention to the classical or linear stability of
the model described by (3). The equation for the perturba-
tion (18) has the form

O [V(E'0"n+ F" 0" 000" n)| =[Voe I — Oy (V¢F'3"¢(>i]é7)-

We consider static solutions and obtain

WV (<2F/ X = F) ) = Voo s+ (FLVid)) +w*VE] .
(50)

The use of the equation of motion leads to

[V (=2F)Xs— F)) 0] = [2F) X5+ F,) "V +0*VF]] .
(51)

For solutions with X constant, only the V terms depend
on z. Thus, we get

A2

) =wn, (52)
where A is given by (22) and has the form
2OF" X, + F!
We counsider (25) and we make the changes
1 A (54)
= —U , xr= ;
n Ni% Y
to get
—u,, +U(2)u=w?u, (55)
where
1 1
Uz)=—|—= 56
) Vv < V> 2z (56)
For the function (44) we have
2a—-1
A% = : 57
. 57)

If we consider the functions V(¢) = sech(¢)/7, V(¢) =
sech?(¢)/2 and V (¢) = e /+/m, the quantum-mechanical
potentials are U(z) = w/4[cosh(z) +sech(z)], U(z) =
2cosh(z)? and U(z) = \/me~*" (22 +1). Their profiles are
very similar, and this shows that the quantum-mechanical
problem supports no negative eigenvalue, ensuring stabil-
ity of the defect solutions. The zero mode that comes from
translational invariance should be 19 = d¢/dz = ¢;, but
this is constant and non-normalizable. Thus, there is no
zero mode, and all the fluctuations are bounded to the
defect.
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3.2 Extended models of the second type

We consider the second type of models, in which we main-
tain the potential present in the standard scenario but
change the kinematics. The general structure of the models
isnow given by (4), and we suppose that the function F'(X)
is arbitrary but reproduces the standard structure for X
small [35].
In general, the equation of motion is
O, (F'ot¢)+V,=0. (58)
We notice that in the standard situation F(X) = X, and
F’ =1, which makes the above equation the standard equa-
tion of motion. We can rewrite this equation in the form

F"9%p0" 9000, + F'Op+Vy =0. (59)
We now search for a static solution, ¢ = ¢(z), to get
(FL— %) " =V, (60)

where Fs = F(—¢?/2). In this case, the first-order equa-
tion has the form

Fs—2F/ X, =V(9). (61)
The energy density for the static solution is
p=—F(X)+V(9). (62)
We use (61) to obtain
p=Fl¢”. (63)

The restriction that comes from the NEC gives F’ > 0.
Thus, the energy density is non-negative, which makes the
energy positive definite.

In general, the non-trivial form of (61) suggests that it
is not always possible to solve this problem analytically.
However, we can make further progress supposing that
there is a first-order equation of the form

¢ =W(9),

where W = W(¢) is a function of the scalar field. This
choice imposes on the potential the condition to have the
specific form

(64)

V(p)=F+FW?, (65)
where in F and in F’ we have to change X — —¢'%/2, and,
with the use of the first-order equation (64), to —W?2/2,
which then gives the potential as a function of ¢.
We illustrate the general situation with some examples.
Firstly we choose the following function:
F(X)=X+aX?, (66)
where « is a real parameter that controls the extension of
the model. The NEC restriction leads to 1+ 2aX > 0, and
for a static solution we get 1 — a¢? > 0. The hyperbolicity
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condition is 1+ 6aX > 0, and so if this condition is valid,
the NEC is also valid. If « is negative, this condition is al-
ways valid. If « is positive, we must take

1 << 1
V3a~ T T V3a’

We notice that when oo — 0, we return to the standard case
and ¢’ is not constrained anymore.
The first-order equation can be written as

1 3

(67)

/2 4 __
§¢ - ZO@ =V(¢). (68)
It is solved by
1, 1 J1-12aV(¢)
2" "6 6a (@)

The limit o — 0 leads to the first-order equation (33), and
this suggests that for the expanded model we define the
effective potential in the form

1 1—-12aV(9)
Vert(#) = 6 6 '

The form of F(X) is given by (66), and it leads to the
result that if the potential V(¢) will be non-negative, so
will the effective potential in (70). Besides, the zeros of
V(¢) will also be zeros for Veg(¢). This implies that the
topological structure of V' (¢) is preserved in the effective
potential Vog(@). If o > 0, the highest value of V' (¢) should
be 1/12q, with Veg(¢) being twice that value, that is, 1/6¢.

For a kink-like solution connecting two minima of the
potential, the center of the kink, which corresponds to the
field with the highest inclination, is at the maximum of
the potential, Vj, in between the two minima. In general,
the thickness of the solution depends on the maximum Vj;
thus, it will certainly be affected by the parameter «.

If the effective potential is chosen as the potential for
the standard theory, both standard and extended theo-
ries would have the very same defect solutions. In spite of
this, both theories are different and would induce a distinct
behavior for the static solutions: for instance, the energy
density in the standard is given by p = ¢'2, which is differ-
ent from the value p = ¢’ — a¢ of the extended model,
which shows that p > p for a >0, and p < p for a <0.
Another distinction concerns stability, and the nonlinear
profile of F(X) induces a distinct stability behavior on the
extended model.

Let us now consider « to be very small. In this case we
can expand the square root to get the effective potential in
the form

(70)

Verr(9) = V() +3aV ().

Thus, if we consider V(¢) to be a polynomial of degree n,
then the effective potential will also be polynomial, of order
2n. For instance, if we choose the ¢* profile for the poten-
tial (34), we get the effective potential as

Ver() = 5 (1 -6 + 2a(l - )"

(71)

(72)
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Since « is very small, we can rewrite the above equation
(69) in the form

dé 3 .
NCLO) —Za/d¢«/2V(¢) =z.

We see that for a — 0, we get the standard situation. We
now use the ¢* potential (34) to get

(73)

arctanh(¢) — %a <¢ - %d)‘g) =tz (74)

and we are being unable to write ¢ = ¢(z). However, for a
very small we have

¢(z) = £ tanh (z) (1 + iasechQ(ac) (2+sech? (m))) .
(75)

This approximate solution has an energy density

p(z) = sech?® (x) (1 -« (2 —sech®(z) — gsech4(x)>) .
(76)
It can be integrated to give the energy E = 4/3 — 8a/35.

We now consider a generic, and V (¢) as the ¢* model.
The effective potential for (34) becomes

e L V1—6a(l—¢?)?

6a 6a ’

(77)

which we plot in Fig. 1 together with the corresponding de-
fect solutions and energy densities, for the various values
a=0,-1,—4,—16, and —64. We use this figure to notice
from the profile of the defect solution that its width and
energy changes with a, and this nicely illustrate how the
parameter used to extend the model modifies the physical
characteristics of the corresponding topological solution.
We can also choose another model, in which we consider
the a-dependent ¢® potential

(1- )2 - Sa(1- ¢,

V= 1

1
, (75)
For o > 1/3, the potential has seven critical points, given
by +1, 0, and (1 + (3a)~/2)1/2). The first three points
are minima, and the other ones are maxima. For av < 1/3,
the critical points are +1, and 0. The two first points are
minima, and the last one is a maximum.
The kink-like solutions are the same as those of the ¢*
model, given in (34). We use (63) to find the energy density
p(x) = sech(x)* — asech(z)® . (79)
We consider o < 1, to make the energy density non-
negative. The total energy is F =4/3 —32a/35. In this
new model, although the defect solution does not change,
the energy density varies with « in an interesting way, as
we show in Fig. 2. In particular, we notice that as « in-
creases toward unit, the energy density opens an internal
gap, in a way similar to the model investigated in [42],



D. Bazeia et al.: Generalized global defect solutions

11900

P

0.4

-4 4

Fig. 1. Plots of the effective potential (77) (upper panel), the
corresponding defect solutions (middle panel) and energy den-
sities (lower panel) for a =0, —1,—4,—16, and —64. The bold
line is for a = 0; the other lines follow the given sequence

and further considered in [43] as a model that leads to
a braneworld scenario with internal structure. This under-
standing suggests the investigation of the present model in
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Px)

0.8

0.4

X

-2 2
Fig. 2. Plots of the potential (78) (upper panel) and the
corresponding energy densities for the standard defect solu-
tion (35) which solve this model, for the several values o =
0,1/4,1/3,1/2,2/3, and 1. The bold line is for o = 0; the other
lines follow the given sequence

the five-dimensional spacetime with warped AdSs geom-
etry, but this is out of the scope of the present work and will
be further considered elsewhere.

3.2.1 Linear stability

Let us now turn attention to the issue of the classical or
linear stability for the models described by (4). In stan-
dard theory, F(X) = X, and the kink-like defect structures
are stable against small perturbations. To see how the non-
linearity in the kinetic term may influence stability, let us
consider (18) for the fluctuations in the modified model,

we get
Ou (F'0"n+ F" 0" 0% pOam) + Voo =0, (80)

where F’ and F" are functions of ¢'. For ¢ being a static
solution, we can write

—[(F' = F"¢" W] +Vogn=w’Fn.  (81)
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The zero mode solution as in the standard case is the trans-
lational mode, ng = ¢'.

One possibility appears when the model obeys (64) and
(65). In this case, we can rewrite the above equation (81) in
the form

— [(F’ — F"Wz)n’] gus Un=w?F'n, (82)
where
U= (W;+WWy) (F' —F"W?)
+W?W; (F"W?—3F") . (83)

Here F should be seen as a function of ¢, like in (64). In this
case, we can write

StSn=w?F'ny, (84)
with
S=+vF —F'W?2 (—%—!—qu)) . (85)

We notice that the NEC restriction (F” > 0) is important,
but we have to impose F’ — F""W?2 > 0 for the above ex-
pression to make sense, and this depends on the specific
model under consideration.

We illustrate the situation with the case given by (66),
and with the potential (34). We use (22) to get

s 1+6aX

T 142aX (86)

We suppose that « is very small. In this case, up to first
order in a we can write

A=1+2aX=1-a¢?. (87)
We use the result (75) to obtain
A=1—asech*(z) (88)
and so, as before, we change variables to write
z= % =z+ %a tanh(z) (2+sech®(z)) . (89)
We invert this expression to get
T=2z— %a tanh(z) (2 + sech?(2)) . (90)

The potential U(z) that appears in the Schrédinger-like
equation has the form

U(z) = 4 — 6sech®(z) 4 asech®(z)

x [15sech®(z) — 11sech®(2) — 2] . (91)
In this case, since « is small we can write
StSn=w?n, (92)
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where

and
u(z) = —2tanh(z)
+ %a tanh(z)sech®(z) (1 + 5sech®(2)) , (94)

which ensures stability of the defect solutions.

4 Final comments

The new defect solutions found in the former section,
Sect. 3, present features that may be of importance in ap-
plications. To elaborate on an interesting possibility, let us
concentrate on the energy of domain walls generated by
the defect solutions found in Sect. 3.2. We first consider the
standard situation, but now we work in higher spatial di-
mensions. To be specific, however, let us focus on the case
of three spatial dimensions. Here the energy of a static field
configuration is

E:/d?’x (%(V¢)2+V(¢)) :

We follow [33,34] writing E) = K/A+ P/A3, where X is
the scaling parameter, and K > 0 and P > 0 stand for the
kinetic and potential energies, respectively. The required
minimization dEy/dX — 0 for A — 1 leads to K +3P =0,
and this shows that there are no stable defect solutions in
this case. This result is old, but it guides us toward the new
possibility that we now describe.

We may circumvent the above reasoning with the ex-
tensions already investigated, which may contribute to the
stabilization of the higher dimensional defect solutions. Al-
though it is possible to make the investigation more gen-
eral, for simplicity we will concentrate on the example de-
scribed by (66). In this case, the energy of the static field is
given by

(95)

p= [ @ (5007 ralvoreve) . o0
and now the quantity Ex = K/A+ P/A*+ K\ may not col-
lapse anymore, due to the new term K, which represents
the contribution added in the extended model. Indeed, the
new defect structure may be stable, collapse or expand,
depending on the contribution K being equal, lesser or
greater than K + 3P. This new result shows very clearly
that the extension considered in (66) changes the standard
scenario, leading to defect solutions that may engender a
distinct time evolution, which would be of direct interest to
applications in cosmology.

We illustrate the issue supposing that the defect so-
lution presents spherical symmetry. In this case, we can
think of it as a spherical domain wall with a given thick-
ness, which can be identified with the width of the kink-
like solution found in (1,1) spacetime dimensions. As we
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have shown in Sect. 3.2, the term added in the extended
model changes the width of the solution, and this may in-
troduce additional effects into the time evolution of the
defect structure in higher dimensions. It is clear that a pos-
sibility concerns the dependence of the energy density of
the wall on R, the radius of the spherical wall, and this may
also change the way the defect evolves in time. A similar
situation is described by an inflating elastic ball: as the ball
inflates, the thickness of the elastic membrane decreases
with increasing R; if the total energy of the ball remains
constant, its energy density o should depend on R~2 to
compensate the variation of the area of the ball.

In general, we write the energy density of the spherical
domain wall as o = o(R). We consider the relativistic case
and we write the energy of the defect solution of radius R in
the form E = o(R)R?/v/1 — R2. We suppose that o(R) ~
1/R*, a real and get

R?=1-pR*?~9) (97)
where p is a parameter that depends on the initial velocity
of the defect. We notice that a = 2 leads to vanishing ac-
celeration, and we get accelerated expansion for a > 2 and
collapse for a < 2. The case a = 0 describes the situation in
which the energy density of the wall does not depend on R,
which we recognize as the standard scenario — see, for in-
stance, Sect. III of [44] for more details on this issue. Thus,
for a € (2,0) the defect collapses slower than in the stan-
dard scenario, but for a € (0, —o0) it collapses the faster the
lower is a.

Another line of investigation is related to the presence
of two or more real scalar fields. The presence of more fields
leads to two distinct classes of models, living in one or
more spatial dimensions. In the case of a single spatial di-
mension, the presence of another field may contribute by
adding internal structure for the defect solution generated
by the first field, as examined for instance in [45—50]. In the
case of two spatial dimensions, we can use two fields to gen-
erate junctions of defects, as examined for instance in [51—
57]. These extensions together with the extensions exam-
ined in the present work will certainly generate new models
and new possibilities of internal structures and junctions.

To summarize, in this work we have investigated two
distinct classes of models described by a single real scalar
field in (1,1) space-time dimensions. In the first class
of models, we have generalized the tachyonic dynamics,
searching for the presence of static solutions, together with
the corresponding stability profile. In the other case, for
the second class of models we have extended the standard
dynamics, investigating the presence of stable defect so-
lutions in diverse contexts. We have constructed explicit
defect structures, together with the specific considerations
concerning stability. In particular, we have shown how
some extensions may modify the standard evolution of do-
main walls in higher spatial dimensions, leading to distinct
evolutions that are of direct interest to applications in di-
verse contexts.
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